产品介绍

功率预测辅助系统

中网能科光伏功率预测模型,是一个融合物理机理与AI智能的高精度预测引擎,采用“物理 + 数据驱动混合架构”,数据采集体系实现多源异构数据融合,结合物理机理约束与深度学习算法,具有智能的自动效果优化能力,兼顾可解释性与预测精度。精准预测短期、超短期及中长期功率输出。

适用场景

适用于集中式光伏电站功率预测、区域电网功率预测。规模越来越大的现货交易,对功率预测的精准度要求更高,直接决定了交易的收益水平。精准的功能预测,对新能源的消纳比例提升、对电网的稳定性都至关重要,是主动调度与智能消纳的基石。

渔光互补
农光互补
山地光伏
荒漠光伏
厂房光伏
屋顶光伏

功能优势

Shoes

气象卫星数据采集融合及分析

  • 多源卫星数据体系
  • 高精度时空覆盖
  • 全光谱数据融合
  • 持续AI训练与模型进化
  • 高价值气象输出
  • Shoes

    地空联动云变观测技术

  • 聚焦核心挑战
  • 地基成像矩阵部署
  • 双光通道协同观测
  • 云层三维定位技术
  • 数据驱动规律沉淀
  • Client Cases

    A Water PV station in Guangdong Province, China

    300 MW, covering an area of 5000 acres

    10 in total, 1 station manager, 9 O&M staff

    广东渔光互补光伏电站

    Client Feedback

    After the drone inspection, PV hot spots, bird droppings and other problems were basically found, and after on-site review and treatment, the power generation was predicted to increase by more than 2%.

    Photovoltaic power station manager

    SmartEye positioning of defective PV modules is very accurate, which can greatly save time and effort, and increase the efficiency of fault handling by at least 90 percent

    Photovoltaic Power Station Engineer

    SmartEye inspection efficiency is very high, usually 2 weeks manual inspection of PV modules, SmartEye completed in 2 hours.

    Photovoltaic Power Station Engineer